

UV-C DB90.1 BOX UV-C DB60.0 BOX For Optical and Sunglasses

RELIABLE REDUCTION of BACTERIA, VIRUSES and FUNGI

KOOPTECH[®]- CINEMA

Kooptech[®]- Cinema

RELIABLE REDUCTION of BACTERIA, VIRUSES and FUNGI

Kooptech[®] UV-C DB.90.1 and DB60.0 Boxs are a universal solution for the reduction of bacteria, viruses and fungi with UV-C irradiation.

UV-C Box can be used with a variety of items, optical and sunglassses being among them.

Similarly to any other public place, optical stores may become a center of unintentional transmission of infections between Clients and staff. This results directly from repeated try-ons of not-disinfected glasses, exposed to aerosols exhaled through nose and mouth, direct contact with human skin and vicinity of uncovered surfaces of the eyes.

Therefore, it is recommended that they are treated with UV-C germicidal irradiation that can further decrease the risk of exposure to pathogens that cause infections¹. UV-C irradiation has been successfully used for many years for disinfection* purposes in water treatment and surface and air disinfection.

Optimal placement of lamps inside the **UV-C DB90.1 DB60.0 Boxs** and the use of a highly reflective coating creates a uniform UV-C irradiation inside the box and maximizes the efficacy of UV-C irradiation on the glasses.

UV-C DB.90.1 and DB60.0 Boxs has been certified by accredited laboratory.

UV-C Disinfection Box is aesthetic and compact. Displayed in the right place, not only it fulfills its disinfecting function, but also increases the sense of safety and builds confidence in Clients.

The operation is simple and does not require any specialized training. The device is ready for use immediately after connecting to the power.

*All references to 'disinfection' are referring generally to the reduction of pathogenic bioburden and are not intended to refer to any specific definition of the term as may be used for other purposes by the U.S. Food and Drug Administration or the U.S. Environmental Protection Agency.

Kooptech-Cinema reserves the right to change design and specification of products without decreasing their functionality.

TECHNICAL SPECIFICATION

parameter	Kooptech [®] UV-C DB90.1 Box
dimensions (W x H x D)	20.7" x 24.6" x 23.6" (525 mm x 625 mm x 600 mm)
weight (without baskets)	77.2 lbs. (35.0 kg)
nominal supply voltage	1-phase, 110 VAC or 230 VAC (selectable), 50-60 Hz
connection power	90 W
power connection cable length	4.9 ft (1.5 m)
cycle time	adjustable - from 1 min to 3 min
max ambient temperature	95°F (35°C)
max ambient humidity	80% (no condensation)
UV-C lamps specification	6x 15 W T8 UV-C (254 nm germicidal lamps)
UV-C lamps life	9 000 hrs*
minimum UV-C irradiance 100 mm away from the lamps	10 W/m ²

*With Philips TUV T8 15W UV-C lamps, at depreciation of UV-C output by -10% (based on manufacturer's data)

external dimensions

KOOPTECH[®] UV-C DB90.1 BOX

The Kooptech[®] UV-C DB90.1 Box can be used for disinfection of other items.

UV-C Box is equipped with 2 removable Trays that can be used for keeping various items** inside the Box.

Available disinfection space with Trays inside the Box

Available disinfection space with Trays removed

** Applicable to items that may be safely exposed to UV-C irradiation; effectiveness of disinfection depends on surface properties of the items placed inside the UV-C DB90.1 Box as well as on the orientation of the surfaces and amount of UV-C light reaching these surfaces.

Kooptech-Cinema reserves the right to change design and specification of products without decreasing their functionality.

95 [3.7"]

95 [3.7"]

KOOPTECH® UV-C DB60.0 BOX

TECHNICAL SPECIFICATION

parameter	Kooptech [®] UV-C DB60.0 Box				
dimensions (W x H x D)	20.7" x 12.8" x 23.6" (525 mm x 325 mm x 600 mm)				
weight (without baskets)	55.1 lbs. (25.0 kg)				
nominal supply voltage	1-phase, 110 VAC or 230 VAC (selectable), 50-60 Hz				
connection power	60 W				
power connection cable length	4.9 ft (1.5 m)				
cycle time	adjustable - from 1 min to 3 min				
max ambient temperature	95°F (35°C)				
max ambient humidity	80% (no condensation)				
UV-C lamps specification	4x 15 W T8 UV-C (254 nm germicidal lamps)				
UV-C lamps life	9 000 hrs*				
minimum UV-C irradiance 100 mm away from the lamps	10 W/m ²				

*With Philips TUV T8 15W UV-C lamps, at depreciation of UV-C output by -10% (based on manufacturer's data)

external dimensions

mm [in]

MANUFACTURER

AUTHORIZED DISTRIBUTOR

Kooptech-Cinema Sp. z o.o.

Jagiellonska 88 bud. 16 00-992, Warsaw, Poland office@kooptech-cinema.com

EPA Est. 97117-POL-1

Ushio America, Inc.

5440 Cerritos Avenue, Cypress CA 90630, U.S.A. customerservice@ushio.com

GERMICIDAL EFFECT

The typical value of UV-C irradiation inside the **UV-C DB90.1 Box**, at a distance of 100 mm away from the lamps, is 10 W/m^2 (1 mW/cm^2). With a typical treatment time of 150 seconds, the effective dose of UV-C irradiation is then equal to 1500 J/m² (150 mJ/cm²).

Based on data published by IUVA, the table on next pages presents examples of bacteria, viruses and fungi, and effective doses of UV-C 254 nm irradiation required for various levels of reduction of microorganisms (highlighted are values below the typical **150 mJ/cm²** of the **Kooptech® UV-C DB90.1**).

	typical values for surface treatment						
microbe	K [2/1]	dose [mJ/cm ²] for reduction by					
	K [m²/J]	90%	99%	99.9%	99.99%		
bacteria (veg.)	0.14045	2	3	5	7		
viruses	0.03156	7	15	22	29		
bacterial spores	0.01823	13	25	38	51		
fungal cells/yeast	0.00700	33	66	99	132		
fungal spores	0.00789	29	58	88	117		

Kooptech[®] UV-C DB90.1 Box provides an average dose of min. 150 mJ/cm² - higher than typical doses required for 99.99% reduction of microbes

Developed based on International Ultraviolet Association Inc. resources²

GERMICIDAL EFFECT

I 2 3 4 90.0% 99.0% 99.9% 99.9% Aeromonas hydrophila (ATCC7966) 1.1 2.5 4.0 5.5 Wilson et al. 1992 Aeromonas salmonicida (AL 2017) 1.5 2.7 3.1 5.9 Liltved and Landfald 1996
90.0% 99.0% 99.9% 99.9% Aeromonas hydrophila (ATCC7966) 1.1 2.5 4.0 5.5 Wilson et al. 1992 Aeromonas salmonicida (AL 2017) 1.5 2.7 3.1 5.9 Liltved and Landfald 1996
Aeromonas hydrophila (ATCC7966) 1.1 2.5 4.0 5.5 Wilson et al. 1992 Aeromonas salmonicida (AL 2017) 1.5 2.7 3.1 5.9 Liltved and Landfald 1996
Aeromonas salmonicida (AL 2017)1.52.73.15.9Liltved and Landfald 1996
Arthrobacter nicotinovorans (ATCC 49919)8101214Clauß 2006
Bacillus cereus (veg. bacteria, ATCC 11778)67812Clauß 2006
Burkholderia mallei (M13) 1.2 2.7 4.1 5.5 Rose and O'Connell 2009
Brucella melitensis (ATCC 23456) 2.8 5.3 7.8 10.3 Rose and O'Connell 2009
Burkholderia pseudomallei (ATCC 11688)1.73.55.57.4Rose and O'Connell 2009
Brucella suis (KS528) 2.7 5.3 7.9 10.5 Rose and O'Connell 2009
Campylobacter jejuni (ATCC 43429) 1.0 2.1 3.4 4.6 Wilson et al. 1992
Citrobacter diversus57911.5Giese and Darby 2000
Citrobacter freundii 5 9 13 Giese and Darby 2000
Enterococcus faecium (Vancomycin-resistant)791113McKinney and Prude 2012
Enterococcus faecalis (DSM 20478)7.18.713 + tailingChen et al. 2015
Escherichia coli (ATCC 700891) 7.3 10 12 13 Quek and Hu 2009
Faecal coliforms 6 9 13 22 Maya et al. 2003
Francisella tularensis (NY98)1.43.86.38.7Rose and O'Connell 2009
Faecal streptococci9142230Maya et al. 2003
Halobacterium elongata (ATCC 33173)0.40.71.0Martin et al. 2000
Halobacterium salibarum (ATCC 43214) 12 15 18 20 Martin et al. 2000
Helicobacter pylori (ATCC 43504) 4.5 5.7 6.7 7.5 Hayes et al. 2006
Klebsiella pneumoniae 5 7 10 12 Giese and Darby 2000
Klebsiella terrigena)ATCC 33257) 3.6 6.4 9.3 12 Wilson et al. 1992
Legionella longbeachae (ATCC 33462)1.43.04.76.3Cervero-Arago et al. 2014
Legionella pneumophila (ATCC 43660) 3.0 5.0 7.2 9.3 Wilson et al. 1992
Leptospira (biflexa serovar patoc, Patoc I) 2.3 3.8 5.1 6.7 Stamm and Charon 1988
Listeria monocytogenes 2.2 3.0 3.2 4.1 Collins 1971
Mycobacterium avium (D55A01) 6.4 9.4 12 15 Hayes et al. 2008
Mycobacterium avium hominissuis (HMC02, WT) 7.7 12 17 22 Shin et al. 2008
Mycobacterium bovis (BCG) 2.2 4.4 Collins 1971
Mycobacterium intracellulare (ATCC 13950) 7.4 11 15 19 Hayes et al. 2008
Mycobacterium terrae (ATCC 15755) 3.7 9.3 16 Bohrerova and Linden 200
Mycobacterium tuberculosis 2.2 4.3 Collins 1971
Pseudomonas aeruginosa (ATCC 9027) 3.8 6.5 10 17 Abshire and Dunton 1981
Salmonella spp. <2 2 3.5 7 Yaun et al. 2003
Salmonella typhimurium (ATCC 6539) 2.6 4.5 5.8 7 Chang et al. 1985
Shewanella algae 0.9 1.7 2.4 3.2 Qiu et al. 2004
Shewanella oneidensis (MR4) 0.7 1.4 2.1 2.8 Qiu et al. 2004
Shewanella putrefaciens (200) 0.5 0.8 1.1 1.4 Qiu et al. 2004
Shigella dysenteriae (ATCC 29027) 0.1 1.0 1.9 2.8 Wilson et al. 1992
Shigella sonnei (ATCC 9290) 3.2 4.9 6.5 8.2 Chang et al. 1985
Staphylococcus albus 1.1 3.2 4.0 4.8 Collins 1971
Staphylococcus aureus (ATCC BAA-1556) 4.5 7.2 8.8 10 McKinney and Prude 2012
Streptococcus faecalis (ATCC 29212) 6.6 8.6 9.8 11.1 Chang et al. 1985

KOOPTECH[®]- CINEMA

GERMICIDAL EFFECT (continued)

BACTERIA (continued)	fluence (dose) in [mJ/cm ²] for a log reduction / percentage reduction without photoreactivation				reference	
	1	2	3	4	Telefende	
	90.0%	99.0%	99.9%	99.99%		
Vibrio anguillarum	0.5	1.2	1.5	2.0	Liltved and Landfald 1996	
Vibrio cholerae (classical OGAWA 154)	0.8	1.4	2.3	3.9	Banerjee et al. 1977	
Yersinia enterocolitica (ATCC 27729)	1.6	2.7	4.0	5.1	Wilson et al. 1992	
Yersinia pestis (A1122)	1.4	2.6	3.7	4.9	Rose and O'Connell 2009	

Developed based on Malayeri A. H. et al., Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae, source: iuva.org; only results from LP 254 nm lamps presented in the table; in case of more results from one family of microorganisms, values for the most resistance microorganism were selected;

VIRUSES	fluence (dose) in [mJ/cm ²] for a log reduction / percentage reduction without photoreactivation				reference	
VINOSES	1	2	3	4	reference	
	90.0%	99.0%	99.9%	99.99%		
Adenovirus, type 1 (host: PLC/PRF/5 & HeLa cell line)	35	69	103	138	Nwachuku et al. 2005	
Adenovirus, type 2 (host: PLC/PRF/5)	40	78	119	160	Gerba et al. 2002	
Adenovirus, type 2 (host: human lung cell line)	35	55	75	100	Ballester & Malley 2004	
Adenovirus, type 2 (host: A549 cell line, CCL-185)	26	100	135	168	Boczek et al. 2016	
Adenovirus, type 4; ATCC VR-1572 (host: PLC/PRF/5 ATCC CRL-8024)	10	34	69	116	Gerrity et al. 2008	
Adenovirus, type 5 (host: A549 cell line, CCL-185)	51	101	151		Rattanakul et al. 2014	
Adenovirus, type 6 (host: PLC/PRF/5 & HeLa cell line)	39	77	115	154	Nwachuku et al. 2005	
Adenovirus, type 40 (host: HEK293)	35	70	105	139	Guo et al. 2010	
Adenovirus, type 41 (host: HEK293)	45	91	136	182	Guo et al. 2010	
Calicivirus feline (host: CRFK cell line)	7	16	25		de Roda Husman et al. 2004	
Coronavirus	0.7	1.3	2.0	2.6	Walker 2007	
Coronaviridae (Berne virus)	0.7	1.4	2.2	2.9	Weiss 1986	
Coronavirus (Murine, MHV)	1.5	3	4.5	6	Hirano 1978	
Coronavirus (SARS, Cov-P9)	4	8	12	16	Duan 2003	
Coronavirus (SARS, Hanoi)	13.4	26.8	40.2	53.5	Kariwa 2004	
Coxsackievirus, B3 (host: BGM cell line)	8	16	25	33	Gerba et al. 2002	
Coxsackievirus, B4 (host: BGM cell line)	7	13	18	24	Shin et al. 2005	
Coxsackievirus, B5 (host: BGM cell line)	9.5	18	27	36	Gerba et al. 2002	
Echovirus I (host: BGM cell line)	8	17	25	33	Gerba et al. 2002	
Echovirus II (host: BGM cell line)	7	14	21	28	Gerba et al. 2002	
Hepatitis A HM175 (host: FRhK-4 cell)	5.4	15	25	35	Wilson et al. 1992	
Influenza	3.4	6.8	10.2	13.6	UV-Light.co.uk	
JC polyomavirus (host: SVG-A cells)	60	124	171		Calgua et al. 2014	
Myoviridae (host: E. coli C)	1.8	3.6	5.1	6.7	Shin et al. 2005	
Picornaviridae aphthovirus AS 1 (host: BHK-21)	31	63	94	125	Nuanualsuwan et al. 2008	
Poliovirus, type 1 (host: BGM cell line)	8	16	23	31	Gerba et al. 2002	
Reovirus, type 1 Lang strain	16	36			Harris et al. 1987	
Rotavirus SA-11 (host: MA 104 cell line)	9	19	26	36	Wilson et al. 1992	
Siphoviridae (host: E. coli C)	1.8	3.6	5.7	7.5	Shin et al. 2005	

Developed based on Malayeri A. H. et al., Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae, source: iuva.org, and Kowalski W. J., Walsh T. J., Petraitis V. 2020 COVID-19 Coronavirus Ultraviolet Susceptibility; only results from LP 254 nm lamps presented in the table; in case of more results from one family of microorganisms, values for the most resistance microorganism were selected;

KOOPTECH[®]- CINEMA

GERMICIDAL EFFECT (continued)

SPORES	fluence (dose) in [mJ/cm ²] for a log reduction / percentage reduction without photoreactivation				reference	
	1	2	3	4		
	90.0%	99.0%	99.9%	99.99%		
Aspergillus brasiliensis	122	226	293		Taylor-Edmonds et al. 2015	
Bacillus anthracis (Sterne)	28	37	52		Nicholson & Galeano 2003	
Bacillus atrophaeus (ATCC 9372)	22	38	55	71	Zhang et al. 2014	
Bacillus cereus (ATCC 11778)	52	93	140		Clauß 2006	
Bacillus pumilus (ATCC 27142)	68	138	204	272	Boczek et al. 2016	
Bacillus subtilis (ATCC 6633)	36	48	59	77	Chang et al. 1985	
Cylindrospermum (spores)	14	26	43		Singh 1975	
Clostridium pasteurianum (ATCC 6013)	3.4	5.3	6.7	8.4	Clauß 2006	
Encephalitozoon intestinalis	2.8	5.6	8.4		John et al. 2003	
Penicillium expansum (ATCC 36200)	11	38	49	65	Clauß 2006	
Streptomyces griseus (10137)	8.5	13	15	18	Clauß 2006	
Thermoactinomyces vulgaris (ATCC 43649)	55	90	115	140	Clauß 2006	

Developed based on Malayeri A. H. et al., Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae, source: iuva.org; only results from LP 254 nm lamps presented in the table; in case of more results from one family of microorganisms, values for the most resistance microorganism were selected;

Kooptech[®]- Cinema **Maria**

REFERENCES

- Derraik, J.G.B.; Anderson, A.W.; Connelly, E.A.; Anderson, Y.C. 2020. Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable PPE protocol using a double-hit process, medRxiv DOI: 2020.04.02.20051409; https://www.medrxiv.org/content/10.1101/2020.04.02.20051409v1.full.pdf.
- 2. IUVA: Considerations for UVC Efficacy Test Standard of UV Devices in Healthcare Settings, IUVA Workshop September 27, 2018; <u>https://iuva.org/resources/Documents/2018%20Healthcare%20Workshop/Panel%203/3.1a%20Considerations%20for%20UVC%20Effic</u> <u>acy%20Test%20Standard%20of%20UV%20Devices%20in%20Healthcare%20Settings.pdf</u>
- 3. Abshire, R.L.; and Dunton, H. 1981. Resistance of selected strains of Pseudomonas aeruginosa to low-intensity ultraviolet radiation, Appl. Environ. Microbiol., 41(6): 1419–1423.
- Ballester, N.A.; and Malley, J.P., Jr. 2004. Sequential disinfection of adenovirus type 2 with UV-chlorinechloramine, J. AWWA, 96(10): 97–103.
- 5. Banerjee, S.K.; and Chatterjee, S.N. 1977. Sensitivity of the vibrios to ultraviolet-radiation, Int. J. Rad. Biol., 32(2): 127–133.
- Boczek, L.A.; Rhodes, E.R.; Cashdollar, J.L.; Ryu, J.; Popovici, J.; Hoelle, J.M.; Sivaganesan, M.; Hayes, S.L.; Rodgers, M.R.; and Ryu, H. 2016. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems, J. Microbiol. Meth., 122: 43–49.
- 7. Bohrerova, Z.; and Linden, K.G. 2006b. Assessment of DNA damage and repair in Mycobacterium terrae after exposure to UV irradiation, J. Appl. Microbiol, 101: 995–1001.
- Calgua, B.; Carratalà, A.; Guerrero-Latorre, L.; de Abreu Corrêa, A.; Kohn, T.; Sommer, R.; and Girones, R. 2014. UVC inactivation of dsDNA and ssRNA viruses in water: UV fluences and a qPCR-based approach to evaluate decay on viral infectivity, Food Environ. Virol., 6: 260–268.
- 9. Cervero-Aragó, S.; Sommer, R.; and Araujo, R.M. 2014. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts, Water Res., 67: 299–309.
- 10. Chang, J.C.H.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; and Johnson, J.D. 1985. UV inactivation of pathogenic and indicator microorganisms, Appl. Environ. Microbiol., 49(6): 1361–1365.
- 11. Chen, P.-Y.; Chu, X.-N.; Liu, L.; and Hu, J.-Y. 2015. Effects of salinity and temperature on inactivation and repair potential of Enterococcus faecalis following medium- and low-pressure ultraviolet irradiation, J. Appl. Microbiol., 120: 816–825.
- 12. Clauß, M. 2006. Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength, Acta Hydrochim. Hydrobiol, 34(6): 525–532.
- 13. Collins, F.M. 1971. Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light, Appl. Microbiol, 21(3): 411–413.
- 14. de Roda Husman, A.M.; Bijkerk, P.; Lodder, W.; van den Berg, H.; Pribil, W.; Cabaj, A.; Gehringer, P.; Sommer, R.; and Duizer, E. 2004. Calicivirus inactivation by nonionizing (253.7-nanometerwavelength [UV]) and ionizing (gamma) radiation, Appl. Environ. Microbiol., 70(9): 5089–5093.
- 15. Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, Han J, Bi SL, Ruan L, Dong XP. (2003). Stability of SARS Coronavirus in Human Specimens and Environment and its Sensitivity to Heating and Environment and UV Irradiation. Biomed Environ Sci 16,246-255.
- 16. Gerba, C.P.; Gramos, D.M.; and Nwachuku, N. 2002. Comparative inactivation of enteroviruses and adenovirus 2 by UV light, Appl. Environ. Microbiol., 68(10): 5167–5169.
- 17. Gerrity, D.; Ryu, H.; Crittenden, J.; and Abbaszadegan, M. 2008. UV inactivation of adenovirus type 4 measured by integrated cell culture qPCR, J. Environ. Sci. Health, Part A, 43(14): 1628–1638.
- 18. Giese, N.; and Darby, J. 2000. Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems, Water Res., 34(16): 4007–4013.
- 19. Guo, H.; Chu, X.; and Hu, J. 2010. Effect of host cells on low- and medium-pressure UV inactivation of adenoviruses, Appl. Environ. Microbiol., 76(21): 7068–7075.
- 20. Harris, G.D.; Adams, V.D.; Sorensen, D.L.; and Curtis, M.S. 1987. Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria, Water Res., 21(6): 687–692.
- 21. Hayes, S.L.; Sivaganesan, M.; White, K.M.; and Pfaller, S.L. 2008. Assessing the effectiveness of lowpressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms, Lett. Appl. Microbiol., 47(5): 386–392.
- 22. Hayes, S.L.; White, K.M.; and Rodgers, M.R. 2006. Assessment of the effectiveness of low-pressure UV light for inactivation of Helicobacter pylori, Appl. Environ. Microbiol., 72(5): 3763–3765.
- 23. Hirano N, Hino S, Fujiwara K. (1978). Physico-chemical properties of mouse hepatitis virus (MHV-2) grown on DBT cell culture. Microbiol Immunol 22,377-90.
- 24. Jingwen C, Li L, Hao W. (2020). Review of UVC-LED Deep Ultraviolet Killing New NCP Coronavirus Dose. In Technology Sharing. (Hubei Shenzi Technology Co., Ltd.
- John, D.E.; Nwachuku, N.; Pepper, I.L.; and Gerba, C.P. 2003. Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation, J. Microbiol. Meth., 52: 183– 196.
- 26. Kariwa H, Fujii N, Takashima I. (2004). Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn J Vet Res 52,105-112.

Kooptech[®]- Cinema ////////

REFERENCES (continued)

- 27. Liltved, H.; and Landfald, B. 1996. Influence of liquid holding recovery and photoreactivation on survival of ultraviolet-irradiated fish pathogenic bacteria, Water Res., 30(5): 1109–1114.
- 28. Liltved, H.; Vogelsang, C.; Modahl, I.; and Dannevig, B.H. 2006. High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater, Aquacult. Eng., 34(2): 72–82.
- 29. Martin, E.L.; Reinhardt, R.L.; Baum, L.L.; Becker, M.R.; Shaffer, J.J.; and Kokjohn, T.A. 2000. The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum, Can. J. Microbiol., 46(2): 180–187.
- 30. Maya, C.; Beltrán, N.; Jiménez, B.; and Bonilla, P. 2003. Evaluation of the UV disinfection process in bacteria and amphizoic amoeba inactivation. Water Sci. Technol.: Water Supply, 3(4): 285–291.
- 31. McKinney, C.W.; and Pruden, A. 2012. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater, Environ. Sci. Technol., 46: 13393–13400.
- 32. Nicholson, W.L.; and Galeano, B. 2003. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne, Appl. Environ. Microbiol., 69(2): 1327–1330.
- 33. Nuanualsuwan, S.; Thongtha, P.; Kamolsiripichaiporn, S.; and Subharat, S. 2008. UV inactivation and model of UV inactivation of footand-mouth disease viruses in suspension, Int. J. Food Microbiol., 127(1–2): 84–90.
- 34. Nwachuku, N.; Gerba, C.P.; Oswald, A.; and Mashadi, F.D. 2005. Comparative inactivation of adenovirus serotypes by UV light disinfection, Appl. Environ. Microbiol., 71(9): 5633–5636.
- 35. Qiu, X.; Sundin, G.W.; Chai, B.; and Tiedje, J.M. 2004. Survival of Shewanella oneidensis MR-1 after UV radiation exposure, Appl. Environ. Microbiol., 70(11): 6435–6443.
- 36. Quek, P.H.; and Hu, J. 2008. Indicators for photoreactivation and dark repair studies following ultraviolet disinfection, J. Ind. Microbiol. Biotechnol., 35: 533–541.
- 37. Rattanakul, S.; Oguma, K.; Sakai, H.; and Takizawa, S. 2014. Inactivation of viruses by combination processes of UV and chlorine, J. Water Environ. Technol., 12(6): 511–523.
- 38. Rose, L.J.; and O'Connell, H. 2009. UV light inactivation of bacterial biothreat agents, Appl. Environ. Microbiol., 75,(9): 2987–2990.
- 39. Shin, G.-A.; Lee, J.-K.; Freeman, R.; and Cangelosi, G.A. 2008. Inactivation of Mycobacterium avium complex by UV irradiation, Appl. Environ. Microbiol., 74(22): 7067–7069.
- 40. Shin, G.-A.; Linden, K.G.; and Sobsey, M.D. 2005. Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages, J. Environ. Eng. Sci., 4(Suppl. 1): S7–S11.
- 41. Singh, P.K. 1975. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1, Arch. Microbiol., 103: 297–302.
- 42. Stamm, L.V.; and Charon, N.W. 1988. Sensitivity of pathogenic and free-living Leptospira spp. to UV radiation and mitomycin C, Appl. Environ. Microbiol., 54(3): 728–733.
- 43. Taylor-Edmonds, L.; Lichi, T.; Rotstein-Mayer, A.; and Mamane, H. 2015. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation, J. Environ. Sci. Health, Part A, 50: 341–347.
- 44. Weiss M, Horzinek MC. (1986). Resistance of Berne virus to physical and chemical treatment. Vet Microbiol 11,41-49.
- 45. Wilson, B.R.; Roessler, P.F.; Van Dellen, E.; Abbaszadegan, M.; and Gerba, C.P. 1992. Coliphage MS2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens, Proceedings of the American Water Works Association Water Quality Technology Conference, Nov 15–19, Toronto, Canada, 1992.
- 46. Yaun, B.R.; Sumner, S.S.; Eifert, J.D.; and Marcy, J.E. 2003. Response of Salmonella and Escherichia coli O157:H7 to UV Energy, J. Food Protect., 66(6): 1071–1073.
- 47. Zhang, Y.; Zhang, Y.; Zhou, L.; and Tan, C. 2014. Factors affecting UV/H2O2 inactivation of Bacillus atrophaeus spores in drinking water, J. Photochem. Photobiol. B: Biol., 134: 9–15.